
HARDWARE-ACCELERATED REGULAR EXPRESSION MATCHING FOR
HIGH-THROUGHPUT TEXT ANALYTICS

Kubilay Atasu, Raphael Polig, Christoph Hagleitner

IBM Research - Zurich
email: {kat,pol,hle}@zurich.ibm.com

Frederick R. Reiss

IBM Research - Almaden
email: frreiss@us.ibm.com

ABSTRACT

Advanced text analytics systems combine regular expres-
sion (regex) matching, dictionary processing, and relational
algebra for efficient information extraction from text doc-
uments. Such systems require support for advanced regex
matching features, such as start offset reporting and captur-
ing groups. However, existing regex matching architectures
based on reconfigurable nondeterministic state machines and
programmable deterministic state machines are not designed
to support such features. We describe a novel architecture
that supports such advanced features using a network of state
machines. We also present a compiler that maps the regexs
onto such networks that can be efficiently realized on re-
configurable logic. For each regex, our compiler produces
a state machine description, statically computes the num-
ber of state machines needed, and produces an optimized
interconnection network. Experiments on an Altera Stratix
IV FPGA, using regexs from a real life text analytics bench-
mark, show that a throughput rate of 16 Gb/s can be reached.

1. INTRODUCTION

Regular expression (regex) matching is one of the most com-
putationally intensive tasks in network intrusion detection
systems, such as Snort [1], and in information extraction
systems, such as IBM’s SystemT text analytics software [2].
Regex matching and dictionary matching operations can con-
sume up to 90 percent of the execution time in SystemT.
Fig. 1 illustrates a typical SystemT query, where the re-

sults of a regex operation and the results of a dictionary oper-
ation are joined based on a predicate. For instance, we might
be interested in identifying the regions of text where a regex
match follows a dictionary match and the regex match starts,
at most, 30 characters after the dictionary match ends. Such
a query would be executed on a stream of text documents.
For each document, the query execution could produce a set
of regions that are marked by the start offsets of the dictio-
nary matches and the end offsets of the regex matches.
A regex can be transformed into a nondeterministic finite

state automaton (NFA) or into a deterministic finite state au-
tomaton (DFA) using well-known techniques [3]. Efficient

Fig. 1. A text analytics query to find the regions of text
where a regex match follows a dictionary match, and there
are a given number of characters between the end offset of
the dictionary match and the start offset of the regex match.

accelerator architectures for programmable DFA [4, 5, 6, 7]
and reconfigurable NFA [8, 9, 10, 11], which can process
the input stream at a deterministic rate, are readily available.
Approaches that combine NFAs and DFAs to explore the
trade-offs between computation and memory consumption
have also been explored [12, 13, 14]. However, all of these
approaches are severely limited in supporting requirements,
such as start-offset reporting. On the other hand, support
for start-offset reporting and other advanced regex features,
such as capturing groups (see for instance, Perl Compatible
Regular Expressions library1), is a must in text analytics sys-
tems, such as SystemT, which heavily rely on such features.
In this work we describe optimized regex architectures

for supporting start offset reporting and capturing groups.
We demonstrate the scalability of our approach on Field Pro-
grammable Gate Arrays (FPGAs). Our contributions are:

1. An architecture that utilizes multiple state machines
and an optimized network for NFA simulation, where
pack and unpack operations are used to perform mul-
tiple nondeterministic state transitions in parallel;

2. Computation of the size of the network for each regex;

1www.pcre.org

978-1-4799-0004-6/13/$31.00 ©2013 IEEE

Fig. 2. NFA for the regex .*a*b[ˆa]*ca*b.

Fig. 3. NFA with a single nondeterministic state.

3. Support for start offset reporting, including possible
simplifications in the interconnection network;

4. Support for capturing groups, including transforma-
tions on the NFAs to guarantee a maximum number
of two next states for each input/state combination.

2. BACKGROUND

State-of-the-art regex architectures based on programmable
DFAs and hardwired NFAs simply raise a flag to signal a
regex match, which only reveals the end offset of the match
in the input stream. The start offsets can be calculated based
on the end offsets if the regex has a fixed length, but this is
rarely the case. For instance, in the regex a*b[ˆa]*ca*b,
any number of repetitions of a in a*b and in ca*b, and any
number of repetitions of ˆa between these two are allowed,
making the difference between start and end offsets variable.
A naive approach for start offset reporting involves record-

ing the start offset each time the first character (or a fixed
length prefix) of a regex is encountered in the input stream,
e.g., the character a in the example regex above. The prob-
lem with such an approach is that a occurs multiple times
in the regex a*b[ˆa]*ca*b. Assume, for instance that
we are given the input string abcabcab. A regex matcher
should normally report four matches in this string. Assum-
ing that the first character of the input string is at offset 0,
the first regex match starts at offset 0 and ends at offset 4,
the second one starts at offset 1 and ends at offset 4, the third
match starts at offset 3 and ends at offset 7, and the fourth
regex match starts at offset 4 and ends at offset 7. Further-
more, if the leftmost match semantics are used, the second
and the fourth matches should not be reported as they are
contained by the first and the third matches, respectively.
Note also that the first and the third matches overlap with
each other. This simple example demonstrates that multi-
ple start offset values must be remembered at any time by a

Fig. 4. DFA for the regex .*a*b[ˆa]*ca*b.

Fig. 5. NFA for the regex .*a*(?b[ˆa]*c)a*b. The
start and end offsets of the captured group b[ˆa]*c are
updated based on the current offset (co) in the input stream.

regex matcher and these values must eventually be associ-
ated with different end offsets. The existing regex acceler-
ator architectures based on programmable DFAs and recon-
figurable NFAs do not support such a functionality.
The NFA of the regex .*a*b[ˆa]*ca*b is depicted

in Figure 2. To support non-anchored matching semantics,
which enable the regex matching to start at any offset loca-
tion, a nondeterministic start state (i.e., state 0) is included in
the state diagram. In this example, the state 2 is also nonde-
terministic. In general, there can be multiple nondeterminis-
tic states in the NFA of a regex. The nondeterministic states
can be eliminated by applying the powerset algorithm [3],
which can result in an exponential increase in the size of the
state diagram. Figure 3 shows the state transition diagram
after removing the nondeterminism at state 2 using a par-
tial application of the powerset algorithm, where the only
remaining nondeterministic state is state 0. The powerset al-
gorithm creates new states and state transitions, which corre-
spond to a set of states of the original NFA. As an example,
if the two NFAs were simulated on two non-deterministic
machines, while the NFA of Fig. 3 is in state {2,3} the NFA
of Fig. 2 would be in state 2 and in state 3. Finally, Figure 4
shows the DFA of the regex a*b[ˆa]*ca*b. Again, some
of the DFA states correspond to multiple different states of
the original NFA. For instance, while the DFA is at state
{0,2,4}, the original NFA would be in state 0, state 2, and
state 4 if the NFA was simulated on a nondeterministic ma-
chine. Note that state 0 of the original NFA is always active.
Fig. 5 illustrates the use of a capturing group, where

the subexpression b[ˆa]*c is captured using parantheses.
Here, the delimiter (? marks the start of a capturing group,
and the matching closing paranthesis marks the end of the
capturing group. When one or more capturing groups are

defined in a regex, for each regex match, the start and end
offsets of the capturing groups are reported in addition to the
start and end offsets of the complete regex. Fig. 5 illustrates
a way of implementing this behavior assuming that the state
machine receives two inputs: 1) an input character called
cur input, 2) the offset of the current input character in the
input stream, which we call cur offset (co). The transi-
tions from state 0 to states 1 and 2 copy the cur offset,
into a start offset register. The transitions from states 0 and
1 to state 2 copy the cur offset into a capturing group start
offset register, and the transition from state 2 to state 3 copy
the cur offset into a capturing group end offset register.

3. PROPOSED ARCHITECTURES

In this section, we describe architectures for supporting start
offset reporting and capturing groups in regex matching. Our
architectures are based on parallel state machines that com-
municate through an optimized interconnection network.

3.1. State Transition Logic

We assume that multiple replicas of the same state machine
are implemented in hardware. Figure 6 illustrates the way
nondeterministic state transitions are supported within each
replica. Each replica can be in an active mode or in an
inactive mode, and this information is stored in a register
(active reg). The inactive replicas are always at state 0 and
no state transitions can occur in those state machines. For
each active replica, a configuration register (config reg)
stores the current state (state reg), a match signal indicat-
ing whether the current state results in a match (match reg),
the start offset of the matching regex in the input stream
(start offset reg), and start and end offsets for zero or
more capturing groups. Figure 7 illustrates the organization
of a configuration register, supportingK capturing groups.
Assume that an input character is consumed and a state

transition occurs in every clock cycle. The next configu-
ration computation uses the current input (cur input), the
current offset (cur offset) and the current state (state reg)
stored in the config reg to produce an active config out-
put (see Fig. 6), which involves a state, a match signal, a
start offset, and zero or more capturing group start and end
offsets. The new values get stored in the config reg of the
replica in the next cycle. An active replica can become in-
active if no valid state transitions are found at the current
state for the current input character. For instance, at state 1
of Fig. 3, there are no state transitions defined for the input
character c. In such cases, the active flag output of the
replica is set to 0, which makes it inactive in the next cycle.
Assume that the number of state machine replicas is N

and the set of replicas are indexed by {0..N-1}. The hard-
ware can be initialized by setting (active reg = 1) for replica
0, and by setting all other registers of replica 0 to 0, and by

Fig. 6. Support for nondeterministic state transitions.

Fig. 7. Configuration Register.

setting all the registers to 0 for the remaining replicas. As-
sume also that the hardware is configured to implement the
NFA of Fig. 3 . Whenever a character a is encountered in
the input stream, a nondeterministic state transition is trig-
gered: replica 0 remains in state 0, and another replica gets
activated, which continues from state 1, and records the ad-
dress of the latest character consumed in the input stream
in its start offset reg. Similarly, whenever a character b
is encountered in the input stream, a nondeterministic state
transition is triggered: replica 0 remains in state 0, and an-
other replica gets activated, which continues from state 2.
Whenever a non-deterministic state transition is triggered by
a state machine, the respective branch flag output shown
in Fig. 6 is raised, and a branch config output is gener-
ated, which involves a state, a match signal, a start offset,
and zero or more capturing group start and end offsets. The
branch flag and the branch config outputs are then for-
warded to the load flag and the load config inputs of a
selected state machine, whose active reg and config reg
registers get updated in the next clock cycle.

If the regex is non-anchored, the replica 0 always re-
mains active, and at state 0. If the regex is anchored, the
replica 0 remains active for one cycle only, and performs a
single state transition that starts from state 0. Therefore, in
case of replica 0, it is sufficient to implement only the state
transitions for state 0 and omit the registers shown in Fig. 6.

Fig. 8. Network of NFAs.

3.2. Interconnection Network

Our architecture utilizes multiple replicas of a state machine
that operate in parallel. An interconnection network that en-
ables these replicas to communicate with each other is es-
sential (see Figure 8). There is a single active state machine
initially, and while processing the input stream, additional
replicas get activated. The replicas that get activated are pro-
vided with initialization data stored in the load config sig-
nals shown in Figure 6. While processing the input stream,
some of the activated replicas can become de-activated. As
a result, any combination of active and inactive replicas can
be produced depending on the input stream. Note that when-
ever a branch flag is asserted, there can be multiple inac-
tive replicas, one of which must be selected and activated.
In general, there can be multiple non-deterministic states

in an NFA, and multiple branch flag signals can be acti-
vated in parallel by multiple active replicas. Handling all
of these branches in parallel requires selecting multiple in-
active replicas, and routing multiple branch config values
to the selected replicas in parallel. Implementing such a
functionality without introducing multiple delay cycles into
the state transition loop is a nontrivial task, and requires
an efficient interconnection network. An architecture that
combines multiple state machines with an interconnection
network that enables routing of the branch flag (bf) and
branch config (bc) values to the respective load flag (lf)
and load config (lc) values is shown in Fig. 8. Note that
the routing decisions are made based solely on the current
values of branch flag (bf) and active flag (af) signals.
First, the branch flag (bf) and branch config (bc) pairs

are packed using the branch flag signals, as illustrated in
Fig. 9. The parallel pack operation can be efficiently im-
plemented using a reverse butterfly network, and additional
control circuitry that uses parallel prefix computation [15].
After the parallel pack operation, a parallel unpack operation
is used to forward the branch flag (bf) and branch config
(bc) pairs to the load flag (lf) and load config (lc) inputs
of the selected replicas. The unpack operation is performed

Fig. 9. Packing.

Fig. 10. Unpacking.

Fig. 11. A wide pack replaces the pack-unpack sequence.

based on the negated active flag (af) signals as illustrated
in Fig. 10. The parallel unpack operation can be efficiently
implemented using a butterfly network, and additonal con-
trol logic that uses parallel prefix computation [15]. The crit-
ical path of the butterfly and reverse butterfly networks, and
the parallel prefix computation grow only logarithmically
with the number of replicas. This enables scalable hardware
implementations for pack and unpack operations. Alterna-
tive implementations can be found, for instance, in [16].
It is possible to reduce the delay of the interconnection

network at a limited area overhead. Note that the delay of
a butterfly or a reverse butterfly network is log(N), and the
respective area cost is (N/2)log(N), whereN is the number
of nodes (i.e., replicas) interconnected by the network. The
overall delay of the interconnection network is 2log(N), and
the overall area cost is Nlog(N). Figure 11 illustrates that
the pack and unpack sequence can be replaced by a wide
pack operation that combines all 2N values associated with
active flag (af) and branch flag (bf) signals. The delay
of such a pack operation is log(2N) = log(N) + 1, and the
overall area cost is Nlog(2N) = Nlog(N) + N .
Our architecture includes a shutdown logic to avoid re-

dundant next state computations and to support leftmost match
semantics (see Figure 8). If one or more transitions produce
the same state in their active config or branch config
data, the redundancy is eliminated by setting the active flag
or branch flag signals to 0 in all of these configurations
except one. If leftmost match semantics are used, only the

Fig. 12. Simplified Network of NFAs.

configuration with the smallest start offset remains active.
Note that such an operation is executed immediately after
the next state computation and before any routing starts.

3.3. Computing The Size of The Network

The maximum number of NFA states that can become ac-
tive concurrently can be computed statically by applying a
power-set algorithm and computing the mapping of the NFA
states to the DFA states. As an example, the maximum num-
ber of NFA states that become active concurrently is three in
Fig. 4, where the DFA states with the maximum number of
NFA states that are mapped are {0,2,3} and {0,2,4}.

3.4. Start Offset Reporting Using Arbitration

In this section, we are going to show that if the only required
regex feature is start offset reporting, the interconnection
network architecture described in Section 3.2 can be signif-
icantly simplified. First of all, we apply the powerset algo-
rithm partially on the NFA of the regex to eliminate the non-
determinism from all the states except state 0, as illustrated
in Fig. 3. Note that in such a case, the only replica that can
assert the branch flag is the replica that implements the
state 0. Hence, branch flag and branch config signals
can be eliminated from the remaining replicas for resource
optimization. Whenever the branch flag signal is asserted
by the replica 0, if there are multiple inactive replicas, an ar-
bitration logic must be used to select the replica that will be
activated. In our architecture, the load flag signal gets as-
serted in the selected replica, and the branch config signal
is routed to the load config signal of the selected replica. A
straightforward implementation of this solution can simply
select the replica with the lowest index among all the inac-
tive replicas, which can be efficiently implemented using a
simple arbiter. In this way, the complex interconnection net-
work that utilizes pack/unpack operations is eliminated. The
shutdown logic must still be utilized as a preprocessing step
prior to the arbitration logic. Fig. 12 depicts the intercon-
nection structure of the resulting simplified architecture.

Fig. 13. Given the regex R1(?R2)R3, where R1, R2, and
R3 are subexpressions, and subexpression R2 is captured,
we convert R1, R2, and R3 into DFA 1, DFA 2, and DFA 3,
respectively, and add state transitions between the interface
states that are shown in small circles. The interface states
can be nondeterministic due to the possible back edges, re-
sulting in up to two possible next states per input character.

3.5. Start Offset Reporting Using A Simplifed Pack

A simplified pack network that packsN −1 active config,
active flag pairs and a single branch config, branch flag
pair into N − 1 load config, load flag pairs can be uti-
lized for start offset reporting, which reduces the area and
the latency of the pack network with respect to the network
described in Fig. 11. Of course, using such a simplified pack
network is still more expensive than using an arbiter. How-
ever, using the pack network guarantees that a replica with
an index i always has a smaller start offset than a replica
with an index j when i < j. This property greatly simpli-
fies the implementation of leftmost-match semantics in the
shutdown logic. We are omitting the details for brevity.

3.6. Capturing Group Support

The architectures described in Section 3.4 and in Section 3.5
are not general enough to support the capturing groups mainly
because nondeterminism cannot be completely removed from
all NFA states without loosing the capturing group informa-
tion. In other words, it is not possible to produce an NFA
with a single nondeterministic state (i.e., state 0) in the gen-
eral case. Therefore, we have to use the more complex in-
terconnection scheme, as described in Section 3.2. How-
ever, mapping regexs with capturing groups to such an ar-
chitecture is still a non-trivial task because our architecture
allows a limited amount of nondeterminism per state. For
instance, as depicted in Figure 6, for each state/input com-
bination, our state machine elements can produce at most
two possible next states that are stored in active config
and branch config outputs. Increasing the width of the
branch config output to embed multiple next state con-
figurations is possible, but requires a wider interconnection
network that is more costly to implement. We address this
problem by transforming the NFA as illustrated in Figure 13,
where we split the NFA into subexpressions that start or end
with the delimiters associated with the capturing groups and
we convert the resulting subexpressions individually into de-
terministic state machines. Such a transformation guaran-

Table 1. Percent resource consumption for three regex sets from text analytics and network intrusion detection domains.

Benchmark # regexs Architecture 1 Architecture 2 Architecture 3 Capturing Groups
LUTs Registers LUTs Registers LUTs Registers LUTs Registers

Text Analytics 25 4.4 4.3 6.6 5.0 10 6.4 9.6 8.4
L7 Filter 101 29 20 40 22 59 30 - -

Fig. 14. Comb. LUT usage for 25 Text Analytics regexs.

tees at most two possible next states per input character at
the interface states, while all other states are deterministic.

4. IMPLEMENTATION & EXPERIMENTS

To optimize the clock frequency for a wide range of regexs,
we have pipelined our regex processing into two stages. In
the first stage, the active state machines compute their next
states. In the second stage, a pack operation or an arbiter
is used to route the branch signals into the load signals. A
single regex pipeline is time-shared by two interleaved text
streams, accepting an 8-bit character from each stream ev-
ery two cycles. This results in a single-stream throughput
rate of 1 Gb/s and an aggregate throughput rate of 2 Gb/s
per pipeline assuming a clock frequency of 250 MHz. The
aggregate throughput rate can be further improved by repli-
cating the pipelines until the FPGA resources are saturated.
The aggregate throughput rate is what matters most in text
analytics systems because such systems can operate over
thousands of independent text documents in parallel.
In our implementation, we used hardwired state machines,

but our architecture could also utilize programmable state
machines [17]. We made use of character classifier tables,
similar to those described in [17], to reduce the number of
state transition rules, and to reduce complexity of the next
state computation. Our compiler generates the Verilog code
for each regex depending on the desired regex features.
We performed experiments on one regex set extracted

from a real-life text analytics query [2] and on a regex set
that is part of the application layer packet classifier for Linux

TM

(i.e., the L7 filter) [18]. We synthesized the architectures

Fig. 15. Clock frequency (MHz) for Text Analytics regexs.

that were automatically generated by our compiler using the
Quartus II 12.1 software for an Altera Stratix IV GX530
FPGA. Table 1 shows our synthesis results for three differ-
ent architectures outlined in Section 3: Architecture 1 im-
plements the arbitration-based interconnection scheme de-
scribed in Section 3.4; Architecture 2 implements the sim-
plified pack network described in Section 3.5; Architecture 3
implements the wide pack network described in Section 3.2.
All three architectures support start offset reporting. In addi-
tion, we have inserted capturing groups into the text analyt-
ics regexs, and evaluated the respective resource consump-
tion. To support capturing groups, additional configuration
registers (see Figure 7) are used. If the state transition graph
includes only a single nondeterministic state after the trans-
formations illustrated in Fig. 13, Architecture 1 is instanti-
ated. Otherwise, the more costly Architecture 3 is used.
The combinational logic resources used and the clock

frequency achieved by the 25 text analytics regexs, in the
increasing order of complexity, are given in Figure 14 and
in Figure 15, respectively. Note that the complexity of a
regex grows with the number of state machines and with
the number of state transition rules implemented by each
state machine. Architecture 1 is the most efficient choice
in terms of the logic resource usage, and Architecture 3 is
the least efficient choice. In case of Architecture 1, all Text
Analytics regexs met the 250 MHz timing constraint. While
supporting capturing groups, all Text Analytics regexs but
one met the 250 MHz timing constraint. Some text analyt-
ics regexs reached only 144 MHz using Architecture 2, and
some reached only 106 MHz using Architecture 3. Based
on the resource consumption numbers given in Table 1, Ar-

chitecture 1 can achieve a throughput rate of 16 Gb/s using
eight hardware pipelines that process 16 document streams
in parallel. The throughput rate of the software that provides
the same functionality is around 50 Mb/s while executing
16 software threads on an Intel

TM
Xeon E5530 processor,

running at 2.4 GHz. Thus, our FPGA-based solution can
achieve a 320 fold speed-up over the equivalent software.
For L7 filter regexs, the minimum clock frequency re-

ported for Architecture 1 is 146 MHz, while the resource
usage is below 50%. Therefore, Architecture 1 can achieve
a throughput rate of at least 1 Gb/s at 125 MHz using a sin-
gle hardware pipeline that processes two streams in parallel.

5. RELATEDWORK

Ruehle [19] describes a system for hardware processing of
regexs. State information associated with one or more states
of an NFA is stored in a register bank and a crossbar net-
work is used to interconnect the states. State information,
such as transitions and spin counts updated while process-
ing an input stream. Such a network can be very expensive
to implement because the number of states in an NFA grows
linearly with the number of characters in a given regex.
Srinivasan and Starovoytoy[20] describe a method for

determining the length of one or more substrings of an in-
put string that matches a regex. First, the input string is
searched for the regex using an NFA and, upon detecting a
match, the NFA is inverted, so that it embodies the inverse of
the regex. The match string is also reversed and searched for
the inverted regex using the inverted NFA. A main disadvan-
tage of such an approach is that the input stream has to be
scanned twice for each regex match, which can significantly
reduce the throughput rate of the regex matching.

6. SUMMARY AND CONCLUSIONS

Support for advanced regex features, such as start offset re-
porting and capturing groups has been largely neglected in
the design of regex accelerators. However, such features are
of utmost importance in emerging text analytics workloads.
We propose a novel regex matching architecture that sup-
ports such advanced features while operating in a streaming
manner without any backpressure. We also present compi-
lation methods that produce optimized regex architectures.
Our experiments on an Altera Stratix IV FPGA, running
at 250 MHZ, demonstrate a 1 Gb/s single-stream process-
ing rate, and an up to 16 Gb/s aggregate throughput rate for
regexs that are part of a real-life text analytics query, result-
ing in a 320 fold speed-up over the equivalent software.
In our future work, we hope to reduce the resource con-

sumption of our accelerator architecture to make it more
scalable. In addition, we plan to extend our architecture to
cover additional regex features, such as backreferencing.

7. REFERENCES

[1] SNORT network intrusion detection system. http://www.snort.org/.
Accessed: 2013-04-24.

[2] Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Frederick
Reiss, Shivakumar Vaithyanathan, and Huaiyu Zhu. SystemT: a
system for declarative information extraction. SIGMOD Record,
37(4):7–13, 2008.

[3] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Intro-
duction to Automata Theory, Languages, and Computation. Addison
Wesley, 2000.

[4] Fang Yu, Zhifeng Chen, Yanlei Diao, T. V. Lakshman, and Randy H.
Katz. Fast and memory-efficient regular expression matching for deep
packet inspection. In Proc. ANCS, pages 93–102. ACM, 2006.

[5] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley,
and Jonathan Turner. Algorithms to accelerate multiple regular ex-
pressions matching for deep packet inspection. In Proc. SIGCOMM,
pages 339–350, 2006.

[6] Randy Smith, Cristian Estan, Somesh Jha, and Shijin Kong. De-
flating the big bang: fast and scalable deep packet inspection with
extended finite automata. In Proc. SIGCOMM ’08, pages 207–218.
ACM, 2008.

[7] Jan van Lunteren, Christoph Hagleitner, Timothy Heil, Giora Biran,
Uzi Shvadron, and Kubilay Atasu. Designing a programmable wire-
speed regular-expression matching accelerator. In Proc. MICRO,
pages 461–472, Dec. 2012.

[8] Reetinder Sidhu and Viktor K. Prasanna. Fast regular expression
matching using FPGAs. In Proc. FCCM ’01, pages 227–238, 2001.

[9] Ioannis Sourdis, Joao Bispo, Joao M. Cardoso, and Stamatis Vassil-
iadis. Regular expression matching in reconfigurable hardware. J.
Signal Process. Syst., 51(1):99–121, 2008.

[10] Yi-Hua E. Yang, Weirong Jiang, and Viktor K. Prasanna. Compact ar-
chitecture for high-throughput regular expression matching on FPGA.
In Proc. ANCS, pages 30–39, 2008.

[11] Abhishek Mitra, Walid Najjar, and Laxmi Bhuyan. Compiling PCRE
to FPGA for accelerating SNORT IDS. In Proc. ANCS, pages 127–
136. ACM, 2007.

[12] Michela Becchi and Patrick Crowley. A hybrid finite automaton for
practical deep packet inspection. In Proc. CoNEXT, 2007.

[13] Yi-Hua E. Yang and Viktor K. Prasanna. Space-time tradeoff in reg-
ular expression matching with semi-deterministic finite automata. In
Proc. INFOCOM, pages 1853–1861, 2011.

[14] Hiroki Nakahara, Tsutomu Sasao, and Munehiro Matsuura. A regular
expression matching circuit based on a decomposed automaton. In
Proc. ARC, pages 16–28, 2011.

[15] Yedidya Hilewitz and Ruby B. Lee. Fast bit compression and expan-
sion with parallel extract and parallel deposit instructions. In Proc.
ASAP, pages 65–72, 2006.

[16] G. Dimitrakopoulos, Christos Mavrokefalidis, K. Galanopoulos, and
D. Nikolos. Sorter based permutation units for media-enhanced mi-
croprocessors. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 15(6):711–715, 2007.

[17] Jan van Lunteren and Alexis Guanella. Hardware-accelerated regular
expression matching at multiple tens of Gb/s. In Proc. INFOCOM,
pages 1737–1745, 2012.

[18] Application layer packet classifier for Linux. http://l7-
filter.sourceforge.net/. Accessed: 2008-11-23.

[19] Michael D. Ruehle. Detection of patterns in a data stream. US Patent
No.: US 8,190,738 B2, May 2012.

[20] Maheshwaran Srinivasan and Alexey Stravoytoy. Determining regu-
lar expression match lengths. US Patent No.: US 8,051,085 B1, Nov
2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

